The dynamical environment of Dawn at Vesta
نویسندگان
چکیده
Dawn is the first NASA mission to operate in the vicinity of the two most massive asteroids in the main belt, Ceres and Vesta. This double-rendezvous mission is enabled by the use of low-thrust solar electric propulsion. Dawn will arrive at Vesta in 2011 and will operate in its vicinity for approximately one year. Vesta’s mass and non-spherical shape, coupled with its rotational period, presents very interesting challenges to a spacecraft that depends principally upon low-thrust propulsion for trajectory-changing maneuvers. The details of Vesta’s high-order gravitational terms will not be determined until after Dawn’s arrival at Vesta, but it is clear that their effect on Dawn operations creates the most complex operational environment for a NASA mission to date. Gravitational perturbations give rise to oscillations in Dawn’s orbital radius, and it is found that trapping of the spacecraft is possible near the 1:1 resonance between Dawn’s orbital period and Vesta’s rotational period, located approximately between 520 and 580 km orbital radius. This resonant trapping can be escaped by thrusting at the appropriate orbital phase. Having passed through the 1:1 resonance, gravitational perturbations ultimately limit the minimum radius for low-altitude operations to about 400 km, in order to safely prevent surface impact. The lowest practical orbit is desirable in order to maximize signal-to-noise and spatial resolution of the Gamma-Ray and Neutron Detector and to provide the highest spatial resolution observations by Dawn’s Framing Camera and Visible InfraRed mapping spectrometer. Dawn dynamical behavior is modeled in the context of a wide range of Vesta gravity models. Many of these models are distinguishable during Dawn’s High Altitude Mapping Orbit and the remainder are resolved during Dawn’s Low Altitude Mapping Orbit, providing insight into Vesta’s interior structure. Ultimately, the dynamics of Dawn at Vesta identifies issues to be explored in the planning of future EP missions operating in close proximity to larger asteroids. & 2010 Elsevier Ltd. All rights reserved.
منابع مشابه
The rotational motion of Vesta
Context. Vesta is the second largest body of the main asteroid belt, and it has been studied recently in great detail by the Dawn mission. It was the first time that this asteroid, or protoplanet, has been explored by a space mission, and it revealed a differentiated body. The knowledge of the rotational motion and, especially, its precession-nutation and length-of-day variations may add precio...
متن کاملDawn at Vesta: testing the protoplanetary paradigm.
The Dawn spacecraft targeted 4 Vesta, believed to be a remnant intact protoplanet from the earliest epoch of solar system formation, based on analyses of howardite-eucrite-diogenite (HED) meteorites that indicate a differentiated parent body. Dawn observations reveal a giant basin at Vesta's south pole, whose excavation was sufficient to produce Vesta-family asteroids (Vestoids) and HED meteori...
متن کاملVesta, vestoids, and the HED meteorites: Interconnections and differences based on Dawn Framing Camera observations
[1] The Framing Camera (FC) on the Dawn spacecraft provided the first view of 4 Vesta at sufficiently high spatial resolution to enable a detailed correlation of the asteroid’s spectral properties with geologic features and with the vestoid (V-type) asteroids and the Howardite-Eucrite-Diogenite (HED) class of meteorites, both of which are believed to originate on Vesta. We combine a spectral an...
متن کاملEarly Impact History and Dynamical Origin of Differentiated Meteorites and Asteroids
Laboratory studies of igneously formed meteorites suggest that numerous meteorite parent bodies were melted to form metallic cores and silicate mantles. Studies by the Dawn spacecraft confirm that (4) Vesta melted in this way (McSween et al., 2013; see the chapter by Russell et al. in this volume). In principle, one would think the origin of iron and stonyiron meteorites and achondrites would b...
متن کاملThe Vesta gravity field, spin pole and rotation period, landmark positions, and ephemeris from the Dawn tracking and optical data
The Vesta gravity field and related physical parameters have been precisely measured using 10-months of radiometric Doppler and range data and optical landmark tracking from the Dawn spacecraft. The gravity field, orientation parameters, landmark locations, and Vesta’s orbit are jointly estimated. The resulting spherical harmonic gravity field has a half-wavelength resolution of 42 km (degree 2...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010